A-Level

Physics

PHA3/B3/X - Investigative and practical skills in AS Physics Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]| Section A Task 1 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | (a) | readings: | x_{1}, x_{2}, x_{3} and x_{4} each recorded to the nearest mm ; the unit must appear at least once \checkmark
 condone all raw readings to nearest 0.5 mm ; reject all trailing zeros | 1 |
| 1 | (b) | result: | $\frac{2 m\left(x_{1}-x_{3}\right)}{2 x_{4}+x_{2}}$ to 3 sf or to 4 sf with suitable unit, value in range $S V \pm 2 \% \checkmark \checkmark[S V \pm 5 \% \checkmark]$
 note that this is the only part of Section A where excessive sf are penalised | 2 |
| 1 | (c) | explanation: | measure vertical height $[h]$ to half-metre ruler from bench at two or more (well-separated) points
 [give credit for sketch showing set-square arranged against metre ruler and the bench at two suitable positions / allow use of set-square without vertical ruler alongside if positioning is sensible] \downarrow^{\checkmark}
 check heights are the same ${ }_{2} \checkmark$
 [use of set-square between half metre ruler and vertical metre ruler [perpendicular to desk] and half-metre ruler ${ }_{12} \checkmark=$ 1 MAX] (reject idea that clamp stand is vertical or that edge of vertical ruler or set-square can be compared with the markings on the pivoted ruler) | 2 |
| 1 | (d) | explanation: | (x_{1} and x_{3} are both [1 cm] too large so) no effect on ($x_{1}-x_{3}$) [numerator] 1^{r}
 x_{4} [denominator] is [1 cm] increased ${ }_{2} \checkmark$ result (for $\frac{2 m\left(x_{1}-x_{3}\right)}{2 x_{4}+x_{2}}$) decreased ${ }_{3} \checkmark$ (condone 'mass underestimated' but don't allow 'becomes negative') [prediction of change in result based on correct calculation of new value: must see evidence of values correctly substituted to earn $1_{1} \checkmark$ and ${ }_{2} \checkmark$ leading to full credit] | 3 |

2	$\begin{gathered} \text { (a)(i) } \\ \text { and } \\ \text { (a)(iii) } \end{gathered}$	evidence that procedure followed by annotation to Figure 4:	sensible outline of the block marked, top edge aligned with LR to nearest mm; ruled emergent ray marked on Figure 4; emergent ray \approx parallel to PQ (by eye: s at exit must be no greater than 1 mm different to s at Q;; ruled internal ray drawn joining points of entry and exit of ray to the block \checkmark (don't insist on arrows showing direction of rays here or in or in (b)(i))	1
2	(a)(ii)	result for s:	sensible raw reading(s) of s recorded to nearest mm or to nearest 0.5 mm (whichever is consistent with recording of x values in 1(a); don't penalise here as well as in 1(a) for inconsistent precision) evidence marked on Figure 4 to show s found from two or more raw readings at least 30 mm apart (emergent ray may be extrapolated back (ruled) into outline of block) \checkmark	2
2	(a)(iii)	labelling and result for θ.	ruled normal drawn on Figure 4 where PQ meets LR; θ_{1} and θ_{2} correctly marked where ray enters the block with dimensions labelled on Figure 4 (condone if dimensions shown in working for 2(a)(iv); each recorded with unit, each to nearest ${ }^{\circ}$ or to nearest 0.5° ie 0.0° or 0.5° (don't penalise if both θ_{1} and $\theta_{2}\left(\right.$ and $\left.\theta_{\mathrm{d}}\right)$ are all to 0.0°); θ_{1} in range $36(.0)^{\circ}$ to $39(.0)^{\circ} \checkmark$ (ignore angle(s) marked where ray leaves block)	1
2	(a)(iv)	result:	$\frac{s \cos \theta_{2}}{\sin \left(\theta_{1}-\theta_{2}\right)}=x_{2} \pm 5 \mathrm{~mm}$ or use outline of block if x_{2} is not sensible $\checkmark \checkmark\left[x_{2} \pm 10 \mathrm{~mm} \checkmark\right]$ (don't penalise excessive sf here; treat 2 sf answer as 3 sf with trailing zero omitted, eg treat 0.11 m as 110 mm)	2
2	(b)(i)	annotation to Figure 6:	sensible outline of the block marked, top edge aligned with LR to nearest mm (don't penalise again if this is the second missing outline); ruled emergent ray marked on Figure 6; emergent angle \approx incident angle (by eye); emergent ray extrapolated (and ruled) to meet PQ \checkmark	1
2	(b)(ii)	working and result for θ_{d} :	precision of θ_{d} recorded (on answer line) to nearest ${ }^{\circ}$ or to nearest 0.5° and consistent with values recorded in 2(a)(iii) (don't penalise here as well as in 2(a)(iii) for inconsistent precision); θ_{d} in range $72(.0)^{\circ}$ to $78(.0)^{\circ} \checkmark$	1
2	(c)	sketch:	internal and external rays shown ruled; TIR shown at the internal surface, angle of incidence \approx angle of reflection (by eye); point at which TIR occurs must be below the midpoint of the block and exit point to the left of that shown for block in (b)(i); refraction away from the normal as ray leaves block ${ }_{1} \checkmark$ emergent ray parallel to and to the left of the ray in (b) ${ }_{2} \checkmark$	2

Section A Task 2				
1	(a) to (c)	tabulation:	initial readings in part (a): $V_{1} \geq 4.0 \mathrm{~V}$, unit to appear with at least one of V_{1}, V_{2} or V_{3}; part (c) table headings: $\begin{array}{lll} V_{1} / \mathrm{V} & V_{2} / \mathrm{V} \quad V_{3} / \mathrm{V} \end{array}$ withhold mark for any missing unit or separator in the table headings (do not credit 'voltmeter reading' for name of variable; ignore units with data in body of table)	1
		results:	(minimum of) 7 sets (including part (a)) of V_{1}, V_{2} and $V_{3} \checkmark \checkmark$ deduct 1 mark for each missing set (condone $(0,0)$ but insist this is then plotted; deduct 1 mark if V_{1} is not in the left-hand column of a single coherent table; deduct 1 mark for each set where $V_{1}>V_{3}>V_{2}$ is not true deduct 1 mark if largest $\left(V_{1}\right)$ reading (in part (a)) \div smallest $\left(V_{2}\right)$ (in table) <10 unless $V_{1}=V_{2}=V_{3}=0.0 \mathrm{~V}$ is tabulated maximum deduction $=2$ marks	2
		significant figures:	all V recorded to the nearest 0.01 V or all to $0.001 \mathrm{~V} \checkmark$ (condone all 4 dp ; no interpolation allowed here)	1
1	(d)	axes:	marked V_{3} / V (vertical) and V_{2} / V (horizontal) deduct $1 / 2$ for each missing label or separator, rounding down; no mark if axes are reversed either or both marks may be lost if the interval between the numerical values is marked with a frequency of $>5 \mathrm{~cm}$	2
		scales:	points should cover at least half the grid horizontally and half the grid vertically (if necessary, a false origin should be used to meet these criteria; either or both marks may be lost for use of a difficult or non-linear scale)	2
		points:	all tabulated points in part (c) plotted correctly (check at least three, including any anomalous points) 1 mark is deducted for every tabulated point missing from the graph and for every point > 1 mm from correct position 1 mark is deducted if any point is poorly marked; no credit for false data	3
		line:	best fit line with a constant positive gradient maximum acceptable deviation from best fit line is 2 mm , adjust criteria if graph is poorly scaled; withhold mark if line is poorly marked	1
		quality:	(minimum of) 7 points to $\pm 2 \mathrm{~mm}$ of a suitable line as described above (judge from graph and adjust criteria if graph is poorly scaled) [if $(0,0)$ tabulated but not plotted, line must pass within 2 mm of origin to save Q mark]	1
				13

Section B					
1	(a)	valid attempt at gradient calculation and correct transfer of data or ${ }_{12} \checkmark=0$ (if a curve is drawn in error a tangent should be drawn to form the hypotenuse of the triangle) correct transfer of y-and x-step data between graph and calculation $1 \checkmark$ (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line) y-step and x-step both at least 8 semi-major grid squares ${ }_{2} \checkmark$ [5 by 13 or 13 by 5] (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria)			2
		G no unit, in range 1.40 to 1.45 (max 4sf, reject $<3 \mathrm{sf}$) $\text { [1.35 to } 1.50 \text { or } 1.4 \checkmark \text {] }$ note that this is the only part of Section B where excessive sf are penalised			2
1	(b)	note that marks are awarded in (b) for (b)(iii) to (b)(v) only			3
			Student's explanation	Explanation, by itself, could account for the observations stated	
			there is contact resistance between plug 1 and socket W	YES \checkmark	
		(b)(iv)	there is contact resistance between plug 2 and socket X	NO \checkmark	
		(b)(v)	the maximum resistance of potentiometer P is approximately 2% less than the assumed value	NO \checkmark	
1	(c)(i)	answers dropped resistanc	YES to (b)(i) or $0 / 1$; terminal pd [V] is le (accept 'lost volts' / 'energy is wasted') \checkmark	han the emf [pd is ss the internal	1
1	(c)(ii)	answers there is n show non	NO to (b)(ii) or 0/1; voltmeter reads zer pd across it) [otherwise voltmeter wo -zero reading]	xpected reading] (when ead $-0.12 \mathrm{~V} /$ would	1
1	(d)	P now act now shar are in ser smaller ra maximum unable to [can still	s as variable resistor [rheostat / not as d between P and R / P and R act as a es] 1^{\checkmark} nge (of values of V_{1}): this mark lost if reading lower ${ }_{2} \checkmark$ produce values close to 0 V or words et V_{1} max but not $V_{1}=0$ is worth ${ }_{13} \checkmark \downarrow$	ntiometer] [voltage is ential divider / P and R idate states that at effect ${ }_{3} \checkmark$	MAX 2

2	(a)	$\sin \theta_{1}=\frac{\mathrm{XZ}}{\mathrm{WX}} \text { and } \sin \theta_{2}=\frac{\mathrm{YZ}}{\mathrm{WY}} \text { or } \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{(\mathrm{XZ}) \div(\mathrm{WX})}{(\mathrm{YZ}) \div(\mathrm{WY})} \mathfrak{}^{\checkmark}$ (must see this step either separately or in substitution for $\frac{\sin \theta_{1}}{\sin \theta_{2}}$ or 0/2; condone i and r for θ etc) $\begin{aligned} & n=\frac{(\mathrm{XZ}) \div(\mathrm{WX})}{(\mathrm{YZ}) \div(\mathrm{WY})}=\frac{\mathrm{XZ}}{\mathrm{WX}} \times \frac{\mathrm{WY}}{\mathrm{YZ}}{ }_{2} \\ & \left(=\frac{(\mathrm{XZ}) \times(\mathrm{WY})}{(\mathrm{WX}) \times(\mathrm{YZ})}\right) \end{aligned}$	2
2	(b)	idea implied that $(\mathrm{XZ}) \times(\mathrm{WY})=n \times(\mathrm{WX}) \times(\mathrm{YZ})$ is of form $y=m x(+c)$; plot $(X Z) \times(W Y)$ against $(W X) \times(Y Z)\left[\frac{X Z}{W X}\right.$ against $\frac{Y Z}{W Y}$ etc] or $0 / 2{ }_{1} \checkmark$ calculate gradient to find n (false plot loses both marks) 2^{\checkmark} [must mention $\mathrm{XZ}, \mathrm{WX}, \mathrm{YZ}$ and WY for full credit: bland 'plot $\sin \theta_{1}$ against $\sin \theta_{2}$ and calculate gradient to find $n^{\prime}=1$ MAX] [alternative method is to plot $X Z$ against $W X$ to find G_{1} and plot $Y Z$ against WY to find $G_{2}{ }_{1} \checkmark$; evaluate $\frac{G_{1}}{G_{2}}$ to find $n_{2} \checkmark$]	2
2	(c)	upper limit of (XZ) range [largest value] is suitable ${ }_{1} \checkmark$ largest $\underline{X Z}$ value \approx length of block (114) [largest $\underline{W X}$ value \approx diagonal distance (131) across block / used (approximately) largest value of $\underline{X Z}[W X]$ available] 2^{\checkmark} lower limit of (XZ or YZ) range [smallest value] is not suitable ${ }_{3} \checkmark$ smallest $Y Z[X Z]$ values have large percentage uncertainty / are unreliable] 4^{\checkmark} (reject idea these values are too close to zero) smallest $\underline{W X}$ value \approx width of block (65) 5^{\checkmark} [statement that range is suitable plus quantitative comment comparing length of block (114) with $\underline{98}$ (the range of $X Z$ data) or covers more than 85% of available range] ${ }_{12} \checkmark \checkmark$ equivalent statement regarding WX: compares available range (131 to $65=$ 66) with $\underline{63}$ (the range of WX data) ${ }_{12} \checkmark \checkmark=2$ MAX statement that range is suitable plus simple qualitative comment relating range to the block, eg 'a large fraction/part of the available $\mathrm{XZ}[\mathrm{WX}]$ range is covered' ${ }_{12} \checkmark=1$ MAX (bland 'range is large / wide' is not enough)]	MAX 3

3	(a)	s from $\frac{R_{2}-R_{1}}{3}=1.43 \mathrm{~mm} \checkmark$ (accept bald answer for 1 mark)	1
3	(b)	0.01 mm (condone 0.005 mm) \checkmark	1
3	(c)	uncertainty in $3 s[$ in $s]=\underline{0.02} \checkmark[2 \times$ answer for (b)] or $0 / 2$ percentage uncertainty in $3 s=\frac{0.02}{4.29} \times 100=0.47 \% \checkmark$ (use of R_{2} and R_{1} is required; accept 1 sf 0.5\%) [for precision $=0.005 \mathrm{~mm}, \%$ uncertainty in $3 s=\frac{0.01}{4.29} \times 100=0.23 \% \checkmark$ (use of R_{2} and R_{1} is required; accept $1 \mathrm{sf} 0.2 \%$ but reject 0.3%)	2
3	(d)	evidence of suitable working, eg d from $2 s-\left(R_{3}-R_{2}\right)$ or from $5 s-\left(R_{3}-R_{1}\right)$ or from $\frac{2\left(R_{3}-R_{1}\right)-5\left(R_{2}-R_{1}\right)}{3} \checkmark$ $d=0.84 \mathrm{~mm}$ [allow ecf for incorrect s : the candidate in (a) who evaluates the distance between the edges of adjacent holes will get $s=0.59 \mathrm{~mm}$; they get the correct result for d using $\frac{R_{2}-R_{1}}{3}-0.59$]	2
			24

[^0]: Copyright © 2016 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

